Inference by Minimizing Size, Divergence, or their Sum

نویسندگان

  • Sebastian Riedel
  • David A. Smith
  • Andrew McCallum
چکیده

We speed up marginal inference by ignoring factors that do not significantly contribute to overall accuracy. In order to pick a suitable subset of factors to ignore, we propose three schemes: minimizing the number of model factors under a bound on the KL divergence between pruned and full models; minimizing the KL divergence under a bound on factor count; and minimizing the weighted sum of KL divergence and factor count. All three problems are solved using an approximation of the KL divergence than can be calculated in terms of marginals computed on a simple seed graph. Applied to synthetic image denoising and to three different types of NLP parsing models, this technique performs marginal inference up to 11 times faster than loopy BP, with graph sizes reduced up to 98%—at comparable error in marginals and parsing accuracy. We also show that minimizing the weighted sum of divergence and size is substantially faster than minimizing either of the other objectives based on the approximation to divergence presented here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of algorithms for minimizing the sum of earliness and tardiness in hybrid flow-shop scheduling problem with unrelated parallel machines and sequence-dependent setup times

In this paper, the flow-shop scheduling problem with unrelated parallel machines at each stage as well as sequence-dependent setup times under minimization of the sum of earliness and tardiness are studied. The processing times, setup times and due-dates are known in advance. To solve the problem, we introduce a hybrid memetic algorithm as well as a particle swarm optimization algorithm combine...

متن کامل

Accurate Inference for the Mean of the Poisson-Exponential Distribution

Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...

متن کامل

A Scaling Law for the Validation-set Training-set Size Ratio

We address the problem of determining what fraction of the training set should be reserved as development test set or validation set. We determine that the ratio of the validation set size over the training set size scales like the square root of two complexity parameters: the complexity of the second level of inference (minimizing the validation error) over the complexity of the rst level of i...

متن کامل

Stein Variational Gradient Descent: Theory and Applications

Although optimization can be done very efficiently using gradient-based optimization these days, Bayesian inference or probabilistic sampling has been considered to be much more difficult. Stein variational gradient descent (SVGD) is a new particle-based inference method derived using a functional gradient descent for minimizing KL divergence without explicit parametric assumptions. SVGD can be...

متن کامل

Genetic properties influencing the evolvability of gene expression.

Identifying the properties of gene networks that influence their evolution is a fundamental research goal. However, modes of evolution cannot be inferred solely from the distribution of natural variation, because selection interacts with demography and mutation rates to shape polymorphism and divergence. We estimated the effects of naturally occurring mutations on gene expression while minimizi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010